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Abstract
The melting temperature–pressure (Tm–P) phase diagram for both bulk and
nanocrystalline silicon is predicted by using the Clapeyron equation, where the
pressure-dependent volume difference is modelled by introducing the effect of
surface stress induced pressure. The predictions are found to be consistent with
other theoretical results.

1. Introduction

As the principal materials used for solid-state electronic and photovoltaic technologies,
crystalline and amorphous forms of silicon are well studied materials, although new
structures and properties are still being discovered [1–4]. The structural phase transition in
semiconductors under pressure has been a subject of considerable experimental and theoretical
research activity in recent years [5]. It has been found that the melting temperature, Tm(P), of
stable bulk Si in the diamond structure decreases as the pressure, P , increases, or dTm/dP < 0
since ρl > ρs, where ρ denotes the density and the subscripts l and s represent the liquid and
crystal phases, respectively [6–9]. This phenomenon is also present in the Tm–P phase diagram
of nanocrystalline (NC) Si [9].

Since high-temperature and high-pressure experiments on Si are difficult, with poor
measurement accuracy, the available data need further theoretical confirmation. A classic
way to determine the Tm–P curve is the Clapeyron equation, in the following form [10]:

dP = Hm(Tm, P)

�Vm(Tm, P)Tm
dTm (1)

where Hm(Tm, P) denotes the molar melting enthalpy and �Vm(Tm, P) the molar volume
change during melting, where � denotes the change. Equation (1) is useful in many respects,
particularly in the description of the joint rate of change of the primary variables of pressure and
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temperature (dTm/dP) along the phase equilibrium lines, and also in estimating the derived
properties of molar enthalpy and molar volume of transition. However, one is frequently
interested in knowing the relationship between the equilibrium values of P and Tm instead
of their mutual rate of change. This leads us to try and integrate equation (1). Since both
Hm(Tm, P) and �Vm(Tm, P) are functions of pressure and temperature, and the necessary
separation of variables cannot be accomplished in any direct and known manner, the integration
of equation (1) has been carried out through approximate methods ever since the equation was
first established in the 19th century [10]. When �P = P − P0 and �Tm = Tm −Tm0 are small,
Hm(Tm, P) ≈ Hm(Tm0, P0) and �Vm(Tm, P) ≈ �Vm(Tm0, P0) with minor error, where P0

denotes zero pressure and Tm0 is the bulk melting temperature under P0 [10]. However, if �P
and �Tm are larger, then exact functions of Hm(Tm, P) and �Vm(Tm, P) must be known [10].
Thus, successful application of Clapeyron equation for the Tm–P phase diagram depends on
establishing accurate Hm(Tm, P) and �Vm(Tm, P) functions.

There are also other theoretical approaches for predicting the Tm–P curve, such as the
latest two-state model to estimate volume change or to reproduce the Tm–P phase diagram by
considering the free energy [9]. However, the model is only a first step in interpreting this type
of behaviour, where some approximations have not been justified [9].

Recently, a thermodynamic model for surface stress f has been established that is based
on a consideration of the size dependence of the solid–liquid interface energy [11–13]. In
terms of the model, a relationship between the surface stress induced internal pressure Pi and
Tm may be determined, which makes it possible to determine the �Vm(Tm, P) function.

In this paper, the Clapeyron equation associated with f is introduced to estimate the
�Vm(Tm, P) function as well as the Tm–P phase diagram for NC Si and bulk Si. It is found
that the model’s prediction is in agreement with other theoretical results.

2. Model

To solve the Clapeyron equation, Hm(Tm, P) ≈ Hm(Tm) and �Vm(Tm, P) ≈ �Vm(P) are
assumed as a first-order approximation [10], which lead to a simplification of equation (1):

dP = Hm(Tm)

�Vm(P)Tm
dTm. (2)

In equation (2), the Hm(Tm) function is determined by the Helmholtz function, Hm(Tm) =
Gm(Tm) − Tm dGm(Tm)/dTm, where Gm(Tm) denotes the temperature-dependent Gibbs free
energy difference between the solid and liquid. For semiconductors, Gm(Tm) = Hm0Tm(Tm0 −
Tm)/T 2

m0, where Hm0 denotes the bulk molar melting enthalpy at Tm0 [14]. Thus,

Hm(Tm) = Hm0(Tm/Tm0)
2. (3)

In equation (2), �Vm(P) = (Vl − Vs) + (�Vl − �Vs), where �Vs = −Vs Psκs and
�Vl = −Vl Plκl and the compressibility is κ = −�V/(V P). If Pl can be expressed by Ps,
which is simplified as P , then the �Vm(P) function is obtained.

To find a relationship between P and Pl, a spherical particle with a diameter D is
considered. According to the Laplace–Young equation, P = 4 f/D and Pl = 4γ /D for
the particle in a solid state or in a liquid state, respectively [11–13], where γ denotes the
surface energy [11]. Thus, �Vm(P) is size-dependent, which is induced by the distinction of
the surface properties between a solid interface and a liquid interface relating the difference
between γ and f [11]. Essentially, γ describes a reversible work per unit area to form a new
surface, while f denotes a reversible work per unit area under elastic deformation, which is
equal to the derivative of γ with respect to the strain tangential to the surface [11–13]: for
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the solid, f �= γ ; for the liquid, f = γ . Thus, �Vl = −Vl P(γ / f )κl because P/Pl = f/γ .
Then,

�Vm(P) = Vl − Vs + [Vsκs − Vl(γ / f )κl]P, (4)

where f has been expressed as [11–13]

f = (h/2)[3Svib Hm0/(κsVs R)]1/2, (5)

where h is the atomic diameter, R is the ideal gas constant, and Svib is the vibrational part of
the overall melting entropy Sm. Equation (5)—without any free parameter for surface stress
f —was established by considering the relationship between the size-dependent solid–liquid
interface energy γsl(D) (where D denotes the diameter of the crystal) and f [11]. The predicted
f values in terms of equation (5) are in agreement with the known experimental results and
the theoretical results obtained from the first-principle calculations or from elastic continuum
mechanics calculations [11]. Considering that the present theoretical and experimental results
are only semi-quantitative while equation (5) does not need any detailed considerations
regarding the usually unknown surface states, equation (5) is useful for determining the
�Vm(Tm, P) function and the Tm–P phase diagram, with the note that the surface effects
of atoms (ions) have been determined by using the measured thermodynamic amounts shown
in (5) [11].

Integrating P from 0 to P and Tm from Tm0 to Tm in terms of equations (3) and (4),
i.e.

∫ P
0 {Vl − Vs + [Vsκs − Vl(γ / f )κl]P} dP = (Hm0/T 2

m0)
∫ Tm

Tm0
Tm dTm, yields,

Tm(P) = Tm0

√
1 + {2(Vl − Vs)P + [Vsκs − Vl(γ / f )κl]P2}/Hm0. (6)

Although the above discussion regarding P is related to the internal pressure Pi, it may be
extended to the general case for the pressure effect on Tm. This may be illustrated as follows.
Let P denote the sum of Pi and the external pressure Pe, namely

P = Pi + Pe. (7)

When Pe ≈ 0 then P = Pi. This is the case of the size-dependent melting of NC. When Pi ≈ 0
and D → ∞, then P = Pe. This is the usual situation of the pressure-dependent melting of
bulk crystals. Since any pressure source should have the same effect on materials properties,
it is assumed that equation (6) is applicable for bulk crystals.

Note that equation (6) is also applicable for NC if Tm0 in equation (6) is substituted by the
size-dependent melting temperature at zero pressure, Tm0(D). Thus, the melting temperature
for NC Si is a function of the both size and pressure. The value of Tm0(D) may be determined
in terms of the size-dependent amplitude of the atomic thermal vibrations of nanocrystals,
according to Lindemann’s criterion for melting in the following form [15]:

Tm0(D) = Tm0 exp

(
−2Svib

3R

1

D/D0 − 1

)
, (8)

where D0 = 6h for particles where all atoms of the particles are located on their surfaces.
Since Tm0(D) < Tm0, then Tm(P) for NC Si is lower than that for bulk Si over the full range
of pressure change.

3. Results and discussion

Figure 1 presents a comparison between the model predictions of equation (6) associated
with (5) and other theoretical results for the Tm–P diagram for bulk and NC Si [9]. As is shown
in the figure, the Clapeyron equation—without any adjustable parameter—may predict the
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Figure 1. A comparison of the model predictions of equation (6) associated with (5). In the figure,
the solid curve denotes the melting of bulk Si. The two dash curves show the melting of NC Si where
the corresponding Tm0(D) values, denoted as � (1478 K) and ◦ (1371 K), are obtained from other
theoretical results [9] and equation (8), respectively. For comparison, two dotted curves give the
theoretical results for melting of both bulk and NC Si [9]. The symbol � denotes the experimental
results of Tm0(D) for NC Si under ambient pressure with D = 5 nm [16]. The necessary
parameters in equation (6) are as follows: Tm0 = 1693 K [9]; Hm0 = 50 550 J mol−1 [17];
Svib = 6.7 J mol−1 K−1 [18]; h = 0.2352 nm [19]; γ = 0.865 J m−2 [20]; κs = 1.02×10−11 Pa−1

(determined by κs = 1/Bs, where Bs = 97.7 GPa is the bulk modulus [21]); κl ≈ 1 × 10−10 Pa−1

as a first-order approximation under higher pressure [22]; Vs = M/ρs = 12.066×10−6 m3 mol−1

(where M = 28.09×10−3 kg mol−1 is the molar weight [17] and ρs = 2.328×103 kg m−3 [22]);
Vl = M/ρl = 10.93 × 10−6 m3 mol−1 (where ρl = 2.57 × 103 kg m−3 [22]); f is determined
by equation (5); and Tm(P) is in K and P is in GPa. To guide the eye, three arrows indicate the
corresponding melting temperatures of bulk Si and NC Si.

Tm–P phase diagram accurately even when P → 10 GPa, due to the successful determination
of the Hm(T ) and �Vm(P) functions. The prediction of equation (6) has little difference
compared to other theoretical results when P is small. This is because the cited κl value is
measured under a larger value of P , which in turn implies that κl is a weak function of pressure.
When P > 10 GPa, the model prediction also differs a little from other theoretical results,
since the limitation of equation (5) is D > D0 = 6h = 1.4112 nm. This leads to the applicable
pressure range being smaller than 10.5 GPa in terms of equation (5) [15]. It is known that,
on pressurization (beginning at 7–8 GPa at ambient temperature), the diamond structure of Si
undergoes a well characterized sequence of a first-order transition to β-Sn structured Si [2],
which finishes at 10–12 GPa [2, 23]. Thus, before equation (6) becomes invalid, the above
melting transition is also absent [9]. Note that the success of equation (6) implies that both
the assumptions—that Hm is essentially a function of temperature and �Vm is essentially a
function of pressure—are reasonable.

The melting temperature of NC Si is lower than that for bulk Si due to the size effect [15],
as shown in the figure. Moreover, the slope of the Tm–P curve for bulk Si is larger than
that of the corresponding nanocrystals, which can be implied by rewriting equation (2)
as dTm/dP = �Vm(P)Tm/Hm(Tm), where dTm/dP ∝ Tm. Since Tm > Tm(D), then
dTm/dP > dTm(D)/dP .

As shown in the figure, the value of Tm0(D) that is obtained from equation (8) is within
that of the theoretical and experimental results. The predicted Tm–P curves for NC Si for



Effect of pressure on melting temperature of silicon 4965

various Tm0(D) values are different, since Tm(P) ∝ Tm0(D) in term of equation (6), where
the other parameters are the same. However, the trend for the melting temperature to decrease
as the pressure increases is similar, for the same reason.

4. Conclusion

In summary, the Clapeyron equation has been introduced to estimate the Tm–P phase diagram
of bulk and NC Si by introducing the effects of surface stress induced pressure. It is found that,
as P increases, Tm drops more strongly for bulk Si than for NC Si. The model’s predictions
are in agreement with other theoretical results.
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